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Abstract: Soil moisture measurement is essential to validate hydrological models and satellite data.
In this work we provide an overview of different local and plot scale soil moisture measurement
techniques applied in three different conditions in terms of altitude, land use, and soil type, namely
a plain, a mountain meadow and a hilly vineyard. The main goal is to provide a synoptic view of
techniques supported by practical case studies to show that in such different conditions it is possible
to estimate a time and spatially resolved soil moisture by the same combination of instruments:
contact-based methods (i.e., Time Domain Reflectometry—TDR, and two low frequency probes)
for the time resolved, and hydro-geophysical minimally-invasive methods (i.e., Electromagnetic
Induction—EMI, Ground Penetrating Radar—GPR, and the Electrical Resistivity Tomography—ERT)
for the spatially resolved. Both long-term soil moisture measurements and spatially resolved
measurement campaigns are discussed. Technical and operational measures are detailed to allow
critical factors to be identified.

Keywords: soil moisture measurements; TDR; FDR Sensors; EMI; ERT; GPR; case studies

1. Introduction

1.1. Soil Moisture and Soil–Water Relations

Soil moisture can be defined as the water in the uppermost part of a field soil, and it is strictly
affected by soil physical properties, such as texture, organic matter content and stone presence,
but also by land cover (vegetation), land use, topography and rainfall [1–3]. Soil moisture represents
a key state variable to understand surface hydrological processes (such as drainage, evaporation
and plant uptake) and it controls water and energy exchanges between the land surface and the
atmosphere [4,5] contributing also, as key factor, in soil–snow interactions and snow gliding [6].
Through direct evaporation and plant transpiration, soil moisture regulates the partitioning of the
incoming solar energy at the land surface into the outgoing sensible, latent, and ground heat fluxes.
Furthermore, soil moisture plays a significant role in the organization of natural ecosystems and
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biodiversity [4], also with consequences for human disease (e.g., malaria transmission [7]). This is
especially important in water-scarce environments where more frequent drought events occur [8].

Considering agricultural and irrigation management practices, since soil moisture is extremely
variable in space and time, it is very important to accurately evaluate its spatiotemporal dynamics in
the root zone at the field scale. In fact, soil water content strongly influences crop production, crop
health, and soil salinization. In addition, understanding the factors controlling soil moisture variability
allows for an improvement in irrigation management strategies with respect to crop production and
optimal use of water resources [5,9,10].

During the last decades new approaches and techniques for monitoring, modelling and using soil
moisture data have been developed e.g., [11–13]. With reference to soil moisture monitoring, several
studies have been focused on surveying test sites having very different morphological conditions.
Lin et al. [1] did year-round monitoring at different sites in the Shale Hills Catchment in central
Pennsylvania and found a temporal stability of the soil moisture spatial pattern, which was governed
by soil types and landforms. Tromp-van Meerveld and McDonnell [2] measured soil moisture content
at different depths between the soil surface and the soil-bedrock and in different locations across the
trenched hillslope in the Panola Mountain Research Watershed, GA, USA. They observed that spatial
differences in soil depth and total water available at the end of the wet season and during the summer
period appeared to be responsible for the spatial differences in basal area and species distribution
between upslope and mid-slope sections of the hillslope. Teuling et al. [3] investigated the role of
interannual climate variability on soil moisture spatial dynamics for a field site in Louvain-la-Neuve,
Belgium, considering three different years (intermediate conditions—1999; wet conditions—2000;
extremely dry conditions—2003). They observed that climate variability induces non-uniqueness
and two distinct hysteresis modes in the yearly relation between the spatial mean soil moisture and
its variability.

In this work we show the soil moisture estimation at local and plot scale in three different
field conditions: a plain permanent meadow, a mountain permanent meadow and a hilly vineyard
(all located in Northwestern Italy). The main goal is to provide a synoptic view of techniques supported
by practical case studies to show that in very different conditions it is possible to estimate a time
and spatially resolved soil moisture by the same combination of instruments: contact-based methods
for the time resolved, and minimally invasive hydro-geophysical methods for the spatially resolved.
Both long-time measurement series and single-measurement campaigns performed simultaneously
with different techniques are presented.

The paper is organized as follows. In the following part a general overview of the field
measurement technique is presented. In Section 2 we describe some of the available measurement
techniques (also employed for the purpose of this paper) to evaluate soil water content both at the
local and at the plot scale, focusing on how they work from a theoretical point of view. In Section 3 we
present three different case studies (together with the obtained results), showing how we applied the
methods. In Section 4 we discuss the results. In Section 5 we draw conclusions and provide an outlook
on current opportunities and challenges.

1.2. Soil Moisture and Field Measurement Techniques: A General Overview

According to Robinson et al. [11], soil moisture in situ measurement methods can be divided into
contact-based and contact-free methods. Contact-based methods imply direct contact with the soil.
They are mostly applied at the local scale, and include both the destructive sampling (e.g., gravimetric
methods—also defined as properly “direct” method—[14]), and indirect methods that account for
the effects exerted by water content in the soil on its dielectric properties such as: Time Domain
Reflectometry—TDR e.g., [15–17]; Frequency Domain Reflectometry—FDR e.g., [11]; capacitance
sensors e.g., [18,19]; and Time Domain Transmission (TDT) sensors, e.g., [20]. The sensor networks
(wireless in particular) are generally constituted by capacitance, FDR, and TDT sensors, e.g., [5,21,22];
however, more complex but reliable solutions are represented by TDR multiplexing systems, e.g., [23,24],
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similar to the one presented in the plain permanent meadow case study. These techniques give
spatially and resolved temporally highly measurements at the local scale (e.g., vertical soil moisture
profile) and the spatiotemporal dynamics of soil water content at the field scale [4,25]. Contact-free
methods include hydrogeophysical methods and remote sensing. Hydrogeophysical methods provide
multi-point measurements using electromagnetic soil moisture sensors, with a spatial resolution
down to several meters [5]. The most used hydrogeophysical methods are: (1) Ground Penetrating
Radar (GPR) e.g., [26–32], in which the propagation velocity of high frequency (1 MHz to 1 GHz)
electromagnetic waves is used to determine the soil dielectric permittivity and thus soil moisture
content. It can be used with different setups, such as crosshole, air-launched and surface-based [5,26];
(2) Electromagnetic Induction (EMI) e.g., [33–35], and Electrical Resistivity Tomography (ERT)
e.g., [32,35–40], which measure the apparent electrical conductivity (ECa) of the soil, and will be treated
more in detail in the following chapters. Note that strictly speaking ERT is rather a non-invasive
method, as galvanic contact with the ground must be ensured. Remote sensing methods include:
(a) passive microwave remote sensing e.g., [5,41–43], in which radiometers measure the thermal
radiance emitted from the earth surface of a bare or cropped soil, using frequencies between 1 and
12 GHz (L- to X-band), obtaining the dielectric permittivity [5]; (b) airborne and spaceborne active
microwave remote sensing (i.e., radar), such as TerraSAR-X, European Remote Sensing 2 (ERS-2),
Advanced Synthetic Aperture Radar (ENVISAT/ASAR), Radarsat 2, and Phased Array type L-band
Synthetic Aperture Radar (ALOS/PALSAR), which estimate surface soil moisture by the interpretation
of the backscattering coefficient (expressed in decibels and depending on the dielectric permittivity
of soil and surface roughness) [44,45]; (c) a cosmic-ray probe [46,47], which counts secondary fast
neutrons near the soil surface created by primary cosmic-ray particles in the atmosphere and in the soil.
The cosmic-ray probe was applied in different environmental and agricultural settings, e.g., [48–50].
Despite effortz, e.g., [51–54], to downscale the remote sensing soil moisture products (from several
km to the local scale), the promising results obtained in scale root-zone soil moisture, e.g., [55–58],
and the challenging opportunities offered by the future missions under launch in the coming decades,
e.g., [59], remote sensing methods have typically been used to detect surface and near-surface soil
moisture (topsoil—0–0.05 m) with coarse spatial and temporal resolution. Extensive reviews of these
topics are offered by Peng et al. [60] and Mohanty et al. [61]. Within this context, a cosmic-ray probe is
actually the only one used at the field scale, because it has the ability to measure integral soil moisture
content with an acceptable temporal resolution [5]. However, it is essential to highlight that (i) the
cosmic ray footprint radius is some hundreds of meters depending on the humidity, soil moisture and
vegetation; (ii) the detector is extraordinarily sensitive for the first few meters close to the detector;
and (iii) the penetration depth (on the order of a few decimetres) decreases exponentially with the
distance to the sensor, e.g., [46,62–64].

In the following sections we will describe in more detail the soil measurement methods we
adopted in our experimental sites. Namely: TDR and two different low-frequency types of soil moisture
sensors (ECH2O—5TM (Decagon Devices Inc., Pullman, WA, USA) and CS616 (Campbell Scientific
Inc., Logan, UT, USA)) directly connected to data loggers, which give local measurements of soil water
content in time and space; and EMI, GPR, and ERT, which represent plot-scale measurement techniques.

2. Soil Moisture Field Measurement Methods: A Focus on the Techniques Used

2.1. Time Domain Reflectometry (TDR)

As it is non-destructive and less time-consuming with respect to gravimetric measurements, Time
Domain Reflectometry (TDR) is a widely used method for soil moisture measurement. Thanks to the
accurate results achievable, together with its applicability to a large range of soils and settings, TDR
progressively strengthened its position, replacing in the end the gravimetric technique [13]. In this
work, a Tektronix 1502 C TDR cable tester coupled with two wire rods probes has been used.
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TDR estimates the apparent dielectric permittivity of the soil by measuring the travel time a step
voltage pulse takes to propagate along the probe and back. The probe must be placed in the soil either
vertically or horizontally at the selected measuring depth. The dielectric permittivity of the system
that surrounds the probe depends, in turn, on the soil moisture [65–67]. Calibration requirements are
minimal (in many cases soil-specific calibration is not needed), but soil-specific calibration is possible
for applications that demand high accuracy.

Once a soil permittivity value has been calculated starting from the travel time measurements,
the soil moisture can be obtained by employing either empirical relationships [15] or quasi-physically
based equations [68,69]. Considering that soils can have rather different electrical properties, the choice
of the proper relationship/equation is connected with the physico-chemical characteristics of the
surveyed material.

Different types of TDR field probes were studied in the literature, e.g., [70–77]. Robinson et al. [17]
indicated the probes with two parallel rods as those to be preferred in field conditions, since they
investigate a bigger volume in a more homogeneous way. Probes with two parallel rods can also
be inserted more easily into the soil. Nissen et al. [78] suggested that a balun transformer could be
omitted due to the results they obtained in their study.

2.2. Soil Moisture Sensors Directly Connected to Data Loggers

An increasing number of soil moisture sensors directly connected to data loggers are deployed to
measure volumetric soil water content (θ) for agricultural, ecological, and geotechnical applications.
While time-domain reflectometry (TDR) and transmissometry (TDT) operate at GHz range frequencies,
the above mentioned sensors generally operate between 20 and 300 MHz [79]. With respect to
time domain techniques, lower-frequency sensors are less expensive and, despite TDR still being
more accurate, modern electronics coupled with a better understanding of the theory progressively
improve low-frequency sensors’ performance [80]. In this work, we present two contact-based sensor
types: ECH2O—5TM capacitance/frequency domain sensors (Decagon) and CS 616 water content
reflectometers (Campbell Scientific). The frequency of 70 MHz at which both sensors are operating
minimizes textural effects (and salinity) [81–83].

ECH2O—5TM sensors employ a capacitance technique to determine soil moisture. In particular,
these sensors determine the dielectric permittivity of the medium by measuring the charge time
of a capacitor, using the soil as a dielectric medium. CS616 measures a period value. The period
in air is approximately 14.7 microseconds, and the period in saturated soil with porosity equal to
0.4 is approximately 31 microseconds. The output is a ±0.7 volt square wave with the frequency
dependent on water content. This frequency is scaled down in the water content reflectometer circuit
output to a frequency easily measured by a data logger. The probe output frequency or period is
empirically related to water content using a calibration equation. Concerning the geometry, 5TM
probes have three flat 52 mm long prongs spaced 5 mm apart, while CS616s have two 300 mm long
rods with a diameter of 3.2 mm, spaced 32 mm apart. Measurement rods of CS616s are therefore
approximately six times longer and six times wider apart than those of 5TMs. With reference to the
porous medium measurement volume, considering that it is restricted to the direct surroundings
material of the prongs/rods, the 5TMs investigate a soil volume much smaller than the CS616 [82,84].
Particular attention must be paid to the probe–soil contact.

2.3. Electromagnetic Induction (EMI)

As already mentioned, soil is a three-phase (solid–water–air) system, in which the main conducting
phase is the aqueous solution. Due to this assumption, apparent Electrical Conductivity (ECa)
measurements can be used to evaluate soil water content [85]. Friedman [85] also states that there
are three main categories of factors that can affect soil ECa: (i) factors describing the bulk soil and
the respective volumetric fractions occupied by the three phases and possible secondary structural
configurations (aggregation): porosity, water content and structure; (ii) factors quantifying solid particle,
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which are relatively time-invariable: particle shape and orientation, particle size distribution, cation
exchange capacity (CEC) and wettability; (iii) factors representing soil solution attributes, changing
quickly in response to alterations in management and environmental conditions (e.g., environmental
factors): ionic strength, cation composition and temperature. Electrical resistivity thus can change
in space and time as an effect of (a) lithology (time-independent); (b) moisture content; and (c) pore
water salinity. This is accounted for in all constitutive models describing the dependence of bulk
electrical resistivity on soil parameters and state variables, starting with Archie’s law [86]. The possible
misleading effects must be accounted for, as shown in a number of recent literature reports, e.g., [87].
The same problem applies of course to EMI and ERT (see next section) as both measure electrical
resistivity/conductivity.

Since it is a fast, non-invasive technique easy to use in field conditions, Electromagnetic Induction
(EMI) is often used to map soil properties [88], but also soil moisture changes [35]. EMI follows the
principle that within a time-varying electromagnetic field, any conductive object carries a current.
Each instrument has two coils, a transmitter and a receiver, placed at either a fixed or variable spacing.
Vereecken et al. [5] report typical fixed coil separations between 0.3 and 4.0 m, and a frequency
operational range of between 5 kHz and 50 kHz.

EMI induces an electrical current into the soil; the depth of penetration is influenced by the
separation of the coils and by the frequency of the current. Since ECa is affected by soil’s properties,
the signal reaches a specific depth, also related to the uniformity of the soil. If the soil is very conductive
close to the surface, then the signal will be locally dissipated without going deeper. Therefore, the depth
of investigation of EMI equipment depends on four principal factors: (1) the resistivity of the investigated
soil; (2) the coil separation of the instrument; (3) the coil orientation (vertical or horizontal); and (4)
the waveform frequency. By varying the conditions of (2), (3) and (4), multiple depths of investigation
can be achieved. The depth of investigation can be obtained as a function of the waveform frequency,
the magnetic permeability and the electrical conductivity.

Advanced inversion techniques hold the potential of being applied effectively on small-scale EMI
data, such as described above, e.g., [89,90]. While this is not yet common practice for soil moisture
monitoring, some notable applications already exist, e.g., [91]. A recent review of EMI methods for
hydrological and environmental applications is given by Boaga [92].

A number of EMI instruments are available in the market. For this study, we used a commercial
GF Instruments CMD1 system (GF Instruments, Brno, Czech Republic) as well as a commercial GSSI
Profiler EMP-400 (Geophysical Survey Systems Inc., Nashua, NH, USA). No inversion was carried out
in this study, and maps show apparent electrical conductivity as traditionally estimated using a small
induction number approach [93].

2.4. Electrical Resistivity Tomography (ERT)

The ERT is a non-destructive, cost-effective, indirect method that can also acquire data concerning
soil moisture data within the subsurface, e.g., [5,40,94,95]. ERT uses a set of electrodes: two that
inject electrical current into the soil, and two others that monitor the resulting voltage difference.
Given a certain number of deployed electrodes, a very large number of measurement combinations
is possible, giving rise to the measured dataset. Different configurations are possible, with pros and
cons [94]. The measured voltage differences versus injected currents are summarized in terms of the
relative ratio, i.e., the measured resistances (one for each measurement quadripole). A good practice
consists of collecting both direct and reciprocal resistances (i.e., swapping current and voltage electrode
pairs). Theoretically the two configurations shall give the same resistance value, so differences can be
taken as an estimate of measurement error, to be used later for a more educated inversion procedure,
e.g., [96]. Data are then inverted to give an estimate of the electrical resistivity spatial distribution
that causes the observed resistances. Inversion requires the minimization of the overall difference
between measured and simulated resistances, the latter being modelled using a physico-mathematical
simulator that reproduces a DC current in a heterogeneous medium. This least-squares approach
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must generally be supplemented by some form of regularization [94], i.e., some a priori information
about the spatial variability of electrical resistivity. In the most common case, the smoothest spatial
distribution is sought, according to the so-called Occam’s inversion approach that makes use of error
estimates derived, e.g., from reciprocal analysis [94–97]. The resolution of the resulting resistivity
distribution estimates decreases with depth, but is also dependent on the resistivity values themselves.
The resulting distribution is generally reconstructed in 2D, but 3D imaging is possible if dense electrode
distributions are available in 2D at the ground surface or in boreholes [5].

In order to reconstruct soil moisture patterns from ERT data, petro-physical relations such as
Archie’s law are used [40,98]. ERT measurements are widely employed to monitor vadose zone water
dynamics, e.g., [32,94,99,100]. Since ERT allows providing images of spatial scale soil water content
variability along either 2D transects or 3D soil volumes (considering high spatial resolution and daily
temporal resolution) [5], it has been widely used in the studies of root water uptake by plants and
temporal and spatial variations of soil–moisture interactions, e.g., [5,35,101–103]. However, there is
evidence that this inversion procedure can produce mass balance errors due to a rapid decrease of
ERT resolution with depth [40]. This problem may be solved through a coupled hydro-geophysical
approach [40,101]. However, if only qualitative assessment of spatial distribution and time variations
of soil moisture content are sufficient, an uncoupled approach can be used [32] based on the following
steps: (1) inversion of geophysical field data gives the spatial distribution of electrical resistivity;
(2) application of a petro-physical relationship to obtain an estimation of moisture content distribution
from the electrical resistivity.

Many ERT instruments are commercially available. In this study we used a commercial IRIS
Instruments SYSCAL Pro 10 resistivimeter with 72 channels (IRIS Instruments, Orleans, France).
Inversion was carried out using the freely accessible inversion codes developed by Andrew
Binley [32,104–106].

2.5. Ground Penetrating Radar (GPR)

GPR is a non-invasive and non-destructive geophysical method that uses radar pulses to image
the subsurface. Given that the velocity of an electromagnetic wave in a soil is connected to its
bulk dielectric constant (which is, in turn, related to the soil moisture), over the last three decades
GPR has also been widely applied to estimate soil moisture in the unsaturated zone. A transmitter
emits pulses (high-frequency radio waves typically in the range between 10 MHz and 2.6 GHz)
that travel in the medium; when pulses encounter materials having different permittivities they are
reflected, refracted or scattered back to the surface where a receiving antenna records the signal.
Due to the frequency-dependent attenuation, lower frequencies lead to higher soil depth penetrations.
However, higher frequencies provide higher resolutions. Two classes of GPR methods to estimate
soil moisture can be distinguished: single-antenna separation methods (from scattering objects
and traditional GPR sections), and different antenna separation methods (which require multiple
measurements). For a comprehensive presentation of each single method, Huisman et al. [26] provide
a detailed review.

Considering that the use of GPR systems is difficult in uneven irregular areas, an application
is here presented in the plain permanent meadow case study. A commercial PulseEkko Pro radar
system (Sensors and Software Inc., Mississauga, ON, Canada) with 100 MHz antennas has been used.
For more details please refer to Rossi et al. [32].

3. Results: Testing Sites Description

In this section we describe the main characteristics of the three experimental sites together with
the field campaigns layouts and the measurement methods applied in each site. All sites are located
in Northwestern Italy. However, they are representative of very different conditions: the first is
a permanent meadow located in a plain, while the second is a meadow located in a sloping mountain
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abandoned pasture; finally, the third is a vineyard in a hilly zone. A synoptic scheme of the different
equipment used in the different testing sites is given in Table 1.

Table 1. Synoptic table summarizing the different equipment used in the different testing sites.

Plain
[Permanent Meadow]

Mountain
[Permanent Meadow] Hill [Vineyard]

Long Time
Surveys

Single
Campaigns

Long Time
Surveys

Single
Campaigns

Long Time
Surveys

Single
Campaigns

Time Domain Reflectometry
(TDR)

√ √ √ √

Soil moisture sensors directly
connected to data loggers

√ √

Electromagnetic Induction (EMI)
√ √

Electrical Resistivity Tomography
(ERT)

√ √

Ground Penetrating Radar (GPR)
√

Authors make the datasets collected within this work available. Readers or researchers interested
in receiving and/or analysing one or more dataset shown in this work must address their specific
request to the corresponding author.

3.1. Plain Permanent Meadow

Site and instrumental description. The experimental site is located in Grugliasco (Torino),
in the northwestern part of the Po Plain, Italy (45◦03′ N, 7◦35′ E) at 290 m a.s.l. (Figure 1). In this
area, rainfall climatology is characterized by two maxima, respectively in spring (April–May) and
fall (October–November), and by a relatively dry winter and summer [107,108]. The vegetation
growing season lasts, approximately, from late March to mid-October. The monitored area is
1500 m2, constituted by a permanent meadow. The soil is loamy–sand to sandy (≈80% of sand [32],
which progressively rises to ≈95% below the 1st meter), without any gravel, and with a slope of about
1%. These last conditions are particularly suitable for TDR and GPR applications for both practical
operation simplification (e.g., TDR probes insertion; GPR surveying process) and porous medium
characteristics (i.e., low signal attenuation) e.g., [109,110].
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parallel during the insertion process, a steel guide was used. The TDR probes’ layout in the 
experimental field is depicted in Figure 2.  

Figure 1. Experimental site located in Grugliasco (Torino–Italy) and a picture shot in April 2005.

Long-term soil moisture measurements. The soil water content monitoring station is based on
a TDR Tektronix 1502C and a personal computer controlling 11 multiplexers connected to 160 probes
vertically inserted into the soil. The great number of installed probes was conceived to consent the
calibration of the 3D numerical codes described by Paniconi et al. [111]. The sandy soil and the absence
of stones allowed the vertical insertion without disturbance and/or induced lack of contact. Probes are
made out of two parallel stainless steel rods (diameter 6 mm) with the following lengths: 150, 300, 600,
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1000 and 2000 mm. To prevent geometrical probes = deformations and keep rods parallel during the
insertion process, a steel guide was used. The TDR probes’ layout in the experimental field is depicted
in Figure 2.

The measurements started in 1997 and, since summer 2005, the TDR measurements have been
automatic. The TDR signals are sampled and acquired using WinTDR software [112]. Volumetric soil
water content is computed using the composite dielectric approach described by Roth et al. [68].
This relation has been validated by comparison with gravimetric sample measurements in the oven,
obtaining an average error of 2%. The sampling time interval between TDR measurements can vary
from one hour (during and after rainfall events, or during intense exfiltration periods) up to one day.
In the same field, a meteorological station collects meteorological data at hourly intervals.
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Figure 2. Grugliasco site. (a) Layout of the TDR probes in the experimental field; and (b) detail of the
disposition of the probes of different lengths within one of the four groups.

ERT, GPR and TDR single measurement campaign. To evaluate the soil moisture evolution
along time and space, on 28 August 2009 an infiltration experiment (over a rectangular area of 18 m by
2.6 m) was performed at the Grugliasco site. The scheme and a picture of the experimental setup is
shown in Figure 3 (for details, see Rossi et al. [32]).
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Figure 3. Grugliasco site, August 2009. Scheme of the irrigation experiment setup and a picture taken
during the experiment.

The irrigation was performed in three steps: about 2.5 m3 of water were distributed during the
first irrigation step and about 1.5 m3 during the others. ERT acquisitions occurred during irrigation
breaks and with a precise scheduled time. Eight TDR probes with a length of 0.30 and 2.00 m were
also vertically inserted into the soil, along the sprinkler line centred on the ERT profile. The absence
of ponding was guaranteed by ensuring that the irrigation intensity was always lower than the soil
infiltration capacity.



www.manaraa.com

Water 2017, 9, 706 9 of 28

A longitudinal ERT line was acquired along the transect—see Figure 3 for the location—and
measurements were taken only before and after irrigation. The line is composed of 48 electrodes with
0.6 m spacing, for a total length of 28.2 m. A dipole–dipole skip zero scheme was acquired, e.g., [113]

3.2. Mountain Permanent Meadow

Site and instrumental description. The Cogne Valley is a side valley of Valle d’Aosta
(Northwestern Italy). The experimental site (45◦36′ N, 7◦21′ E) is located at 1730 m a.s.l. on a 26◦ slope
facing south–southeast (169◦)—Figure 4. The vegetation is characterized by herbaceous and shrub
components typical of degraded pastures at high altitudes (e.g., Hippophaë rhamnoides L.), therefore it is
representative of wide areas in the Alps (here, the pastures were abandoned due to the slope and low
accessibility). This region is characterized by rainfall occurring mainly in the spring and autumn, with
an average of 650 mm per year. The average annual temperature is about 4 ◦C. The soil depth ranges
from 0.4 to 1.5 m, with a sandy loam texture and some gravel (≈73% of sand).

The experimental site is characterized by intense direct solar radiation due to its aspect, resulting
in large daily temperature variations. The incident radiation accelerates snow melt and the drying of
soil (compared to the plain).
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Long-term soil moisture measurements. Soil water content is measured with three CS616 sensors
(Campbell) connected to a CR1000 Data logger. In 2010, data were collected hourly by one probe
horizontally inserted at 0.1 m depth. In 2015 two more CS616 probes horizontally inserted into the soil
at 0.2 and 0.4 m depths were installed. The gravimetric calibration method and temperature correction
were adopted.

EMI, ERT and TDR measurement campaigns. EMI surveys aiming at mapping the spatial and
temporal variability of soil resistivity along the steep mountain meadow testing site were performed
in 2010, on the 26 September and the 23 October.

Data were collected using a GF Instruments CMD1 in high penetration mode (hence the estimated
investigation depth ranges from the surface down to −1.5 m). During the same investigation dates,
an ERT survey was performed along a transect located on the slope. A dipole–dipole skip zero
acquisition scheme, with full reciprocal acquisition, was adopted. Data were inverted using an Occam
inversion approach, as implemented in the Profile R/R2/R3 software package, accounting for the error
level estimated from the data themselves [114]; here 5% was chosen as a relative error. During the
26 September 2010 EMI and ERT monitoring campaigns, soil moisture values were also measured
by vertically inserted TDR probes. Two transects were investigated: the first was realized with
measurements at the beginning, at the centre and at the end of the ERT transect (0.75 m long TDR
probes vertically inserted into the soil); the second was more superficial (0.15 and 0.30 m long TDR
probes vertically inserted into the soil), conducted perpendicularly to the ERT profile.
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3.3. Hilly Vineyard

Site and instrumental description. The “Tenuta Cannona” (44◦40′ N, 8◦37′ E, 296 m a.s.l.) is
located in Carpeneto (AL), 85 km southeast of Torino, Northwest Italy (Figure 5). The area is in the Alto
Monferrato hilly region, which is a valuable vine-growing and DOC (Controlled Designation of Origin)
wine production area. The soil has a clay to clay–loam texture (≈35% of clay and≈40% of silt). The climate
presents an average annual precipitation of 965 mm (based on the Ovada meteorological station data),
mainly concentrated from October to March. Mean annual air temperature measured at the experimental
site in the period 2000–2013 was 13 ◦C and the average annual precipitation was 849 mm [115,116].
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Figure 5. Experimental site located in Carpeneto (Alessandria–Italy) and a picture shot in March 2016.

Long-term soil moisture measurements. A continuous monitoring was performed starting
from August 2011 to provide information about the space–time variability of hydrological processes
with different cultivation techniques. The test sites, which include conventional tillage (“TI”) and
grass-covered soil (“GC”), are adjacent to each other on a parcel located on a hill with a SE aspect and
average slope of 15%. Each site includes six vine rows aligned along the slope, where the vines are
spaced 1.0 m along the row and there is 2.75 m between the rows (Figure 6).
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Figure 6. Carpeneto site. Plot of the experimental field. Grass Cover (GC) and Conventional Tillage (TI)
represent the two investigated cultivation techniques. The two dotted lines A–A’ and B–B’ represent
the investigated TDR transects.

Soil moisture data were collected by measuring the soil dielectric constant using four series of 5TM
capacitance probes. Sensors have been horizontally inserted both in the central part of the inter-row
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(no soil compaction due to the passage of tractors—“NT”) and in the track position (“T”), affected by the
passage of tractor wheels. During the monitored period (winter 2015–2016), the soil was never frozen.

As regards to the sensors, we followed the calibration suggested by Decagon Devices which apply
the Starr and Paltineanu approach [117], and resulting in an accuracy of ±0.03 m3/m3 (±3% VWC).
Measurements are recorded and stored by a Decagon EM50 Data logger every 60 min.

EMI and TDR combined campaign. In this field campaign, we used the EMP400 multi-frequency
EMI sensor, which can collect data up to three frequencies from 1 to 16 kHz, in horizontal dipole
orientation (HDO) and vertical dipole orientation (VDO), with a coil spacing equal to 1.22 m. In this
study, the EMP400 was used in VDO operating mode, with selected frequencies of 5, 10, and 15 kHz.
The EMP400 is very sensitive at greater depths because of the larger coil distance. The EMP400,
equipped with an integrated WAAS GPS, was carried by hand.

The TDR soil moisture was detected by a TDR Tektronix 1502C with three probes (made out of
two parallel stainless steel rods with diameter 6 mm) vertically inserted into the soil from the surface
down to the following depths: 0–0.15 m, 0–0.30 m, and 0–0.75 m. Measurements were performed every
10 m along two transects both in conventional tillage (TI), and in grass cover (GC) rows.

4. Results: Measurement Campaigns and Surveys Outputs

4.1. Plain Permanent Meadow

Long-term soil moisture measurements. The long-time survey depicted in Figure 7 shows the
soil moisture data from 1 January 2004 to 31 December 2006 at the following vertical depths: 0–0.3,
0–0.6, and 0–1.0 m. Values are obtained through the arithmetic average of all the probes with the same
rod lengths (namely, 16 probes per each considered length).

During the whole of 2004, until summer 2005, measurements were collected on a weekly base.
Despite the general agreement with the precipitation data, the weekly sampling time is not exhaustive
in terms of hydrological processes description (especially with coarse texture soils characterized by fast
dynamics). Under such condition, minor meteorological events characterized by low magnitudes, are
often not detected by the soil moisture profiles. At the same time soil moisture peaks corresponding to
high precipitation events appear often damped (i.e., rarely exceeding the 0.20 m3/m3). Starting from
August 2005, data have been automatically collected at hourly steps. With this sampling interval,
minor events are also detected, and soil moisture peaks are better described, arriving to reach at the
0.30 m3/m3 threshold (which can be considered close to saturation for the investigated sandy soil).

With reference to the adopted experimental set-up, characterized by TDR probes vertically inserted
into the soil, all the different lengths of probes react to meteorological forcing. Obviously this reaction is
inversely proportional to the investigated soil volume/layer in relation to the magnitude of the events
(both in terms of wetting and drying). Accordingly, the most intense reaction is observable in the data
collected by the shortest probes (in Figure 7 represented by the 0.30 m lengths), which investigate
the shallowest layer. Moreover, during the winter months, the presence of frozen topsoil can lead to
TDR measurement complications due to the TDR’s inability to detect simultaneously liquid and ice
contents in frozen soils within the bandwidth included between a few megahertz and 1.5 GHz [118,119].
These complications, if not properly considered, can cause measurement errors proportional to the soil
depth reached by the frost in relation to the depth investigated by the probes.

ERT, GPR and TDR single measurement campaign. Figure 8 shows how visible is the patch
of soil where irrigation had taken place with respect to the non-irrigated zone. However, at this
measurement scale, it is hard to identify the depth of infiltration as the resolution cannot be any better
(and is actually worse) than the electrode spacing (0.6 m in this case).

In order to capture in more detail the changes in moisture content with depth, ERT measurements
were collected also using 24 electrodes (spaced 20 cm), set on a transect perpendicular to the sprinkler’s
line over a total length of 4.6 m. Surface data were obtained with a Syscal-Pro resistivimeter (IRIS
Instruments, Orleans, France) and a dipole–dipole skip zero (dipoles with minimal distance equal
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to one electrode spacing) acquisition scheme. Time-lapse measurements were taken periodically,
using a dipole–dipole skip 0 scheme and full acquisition of reciprocals to estimate the data error
level [96,120,121]. Consistently, the data inversion used an Occam inversion approach, as implemented
in the Profile R/R2/R3 software package, accounting for the error level estimated from the data
themselves [114]. Results are shown in Figures 9–11.
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Figure 8. Grugliasco site, 28 August 2009 (hour 17:30). Absolute ERT image at the end of irrigation
along the longitudinal ERT line (see Figure 3 for location).
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Figure 9. Grugliasco site, August 2009. Absolute ERT images along the transverse line (see Figure 3 for location).

Figure 9 shows the time evolution of absolute resistivity during and after irrigation. The changes
in resistivity are particularly clear as the soil profile was initially very dry (at the end of August).
The same patterns are apparent, with a more distinctive character, in the relative time-lapse images
shown in Figure 10. Here a comparison is also made between a simple approach, where ratios of the
absolute images in Figure 9 are taken pixel by pixel, and the more accurate approach based upon
ratio inversion, e.g., [96]. In this specific case the two approaches yield practically the same results
as, given the geometry of the system and the corresponding resistivity variations over time (the ERT
line is transverse to a long stripe where resistivity changes in a fairly homogeneous manner), no 3D
effect is present. Note that in general a simple pixel-by-pixel ratio of absolute images does not lead to
acceptable results, as the absolute images are 2D inversions in what is actually a 3D space, and ratio or
difference inversions shall be used [122].

Finally, Figure 11 shows the estimated soil moisture patterns in the ERT section, derived from
converting resistivity into moisture content by means of a laboratory-calibrated Archie’s law [86].
The infiltration front estimated by GPR measurements is also depicted (red dotted lines).
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volumes. The following day, starting with the early morning, conditions changed considerably. At 
the surface, the soil moisture was more uniform and decreased from saturation conditions down to 
the field capacity (around 0.17 m3/m3), while, considering the whole depth investigated, conditions 
remain the same. All these considerations agree and integrate the information provided by the ERT 
imaging.  
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Figure 10. Grugliasco site, August 2009. Relative ERT images along the transverse line (see Figure 3 for
location). Both results of ratio inversion and ratios of absolute inversion are shown as percentage of the
background (pre-irrigation) values. In this case the two approaches yield very similar results, as the
resistivity changes occur homogeneously across the measurement line (no 3D effects).

The performed TDR measurements are depicted in Figure 12 as a function of time and depth.
The data are represented as averaged values together with their standard deviations. Initial conditions
are dry and homogeneous with soil water contents about 0.08–0.10 m3/m3 along all the investigated
soil profiles. After the first irrigation step the surface layer immediately reaches values close to
saturation (about 0.30 m3/m3), but variability is evident between measurements despite the uniform
testing conditions. In the following irrigation steps the saturation conditions persist in the surface
layer investigated but the variability between measurements progressively decreases. Considering the
whole profile, the soil moisture gradually increases along with the irrigation volumes. The following
day, starting with the early morning, conditions changed considerably. At the surface, the soil moisture
was more uniform and decreased from saturation conditions down to the field capacity (around
0.17 m3/m3), while, considering the whole depth investigated, conditions remain the same. All these
considerations agree and integrate the information provided by the ERT imaging.
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Figure 11. Grugliasco site, August 2009. Moisture content at different times after irrigation, estimated
from ERT imaging and laboratory calibrated Archie’s law results. A comparison is made against the
depth of the infiltration front estimated by GPR measurements (red dotted lines) [32].
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Figure 12. Grugliasco site, August 2009. Moisture contents and their standard deviation at different
times after irrigation, computed from TDR measurements.

Usability of TDR for deep soil measurement campaigns. A further interesting application
for a low-attenuation porous medium (such as the Grugliasco sandy soil case) is represented by
the suitability of TDR technique to investigate very thick layers (down to 4 m). Despite the
complications connected with the probes’ insertion (where an insertion guide apparatus is essential to
prevent geometrical probe deformations), Figure 13 illustrates the waveform detected during a single
measurement campaign with soil moisture ranging between 0.11 and 0.14 m3/m3 along the profile.
Only the surface layer (0–0.5 m depth) shows a higher value, around 0.22 m3/m3. Figure 13 highlights
that retrieved waveforms are really clear, even for 4 m long probes, and signal reflections are evident
and easy toanalyse.
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Figure 13. Grugliasco site, 20 May 2010. Waveforms detected with different TDR waveguides lengths
vertically inserted into the soil from the surface down to 4 m depth.

4.2. Mountain Permanent Meadow

Long-term soil moisture measurements. In the graph below (Figure 14), the soil volumetric
water content—averaged every 30 min—together with rainfall data—collected by the ARPA VdA
meteorological station located nearby—are plotted on an hourly base from 1 January to 31 December 2016.
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Figure 14. Cogne site, January–December 2016. Precipitation and soil moisture measured at 0.20 and
0.40 m depths.

The volumetric soil moisture collected in the Gimillan site (Figure 4) during the whole year 2016
never exceeded 0.3 m3/m3. This threshold can be considered to be in agreement with the literature
data for coarse texture soils. Interesting data can be observed at the beginning of the year. In this
period the soil is frozen, with a low amount of liquid water content. Then, in the second half of
January, a peak occurs without any surveyed rainfall. This behaviour can be ascribed to the soil
water (and snow) melting due to the temperature increase, especially considering the south–southeast
aspect. Other interesting data can be provided during the summer (in particular from July to the
first half of September). In this period, soil moisture is characterized by progressively lower values,
with a minimum situated around 0.05 m3/m3. In this dry period the correspondence between the
occurrence of rainfalls and soil moisture increase is not so evident. This behaviour might be attributed
to the effect of the dense vegetation coverage (withered by the water scarcity), driving to interception
rather than infiltration into the soil.

With reference to the soil moisture dynamics, fast-acting peaks of soil water increase/decrease
can be observed. This attitude can mainly be attributed to the following factors: (1) hydrological
properties of the coarse soil texture (e.g., fast infiltration processes; limited water retention/storage);
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(2) morphological characteristics of the site, namely the SSE slope aspect, which implies accelerated
atmospheric and evaporation dynamics (e.g., solar radiation incidence; mountain/valley breezes).
Notwithstanding the abovementioned aspects, it is interesting to highlight that during the surveyed
period, the soil moisture values detected at 0.20 m depth were higher than the 0.40 m depth ones,
probably due to the dense vegetation and the spatial variability. However, the time dynamic is more
enhanced at 20 cm depth.

EMI, ERT and TDR measurement campaigns. EMI surveys at this site are particularly complex
given the steep slope and the shrubs (see Figure 4), thus spatial sampling is different at the two dates
(as seen in the extent of the mapped areas represented in Figure 15). The most evident feature refers
to the strong difference in mean electrical resistivity, with October being much drier than September.
Here, the irregular morphology characterized by depressions and bumps, together with the variability
of soil and soil-cover vegetation, led to heterogeneous dynamics in time and space, more evident in
drier conditions.
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Figure 15. Cogne site, 2010. EMI maps, shown as electrical resistivity values. The strong change
between 26 September (more conductive) and 23 ctober (more resistive) is remarkable. The maps
represent the mean electrical resistivity from the ground surface to a depth estimated around 1.5 m.
The purple line shows the location of the ERT line (results in Figure 16). The white dots represent the
two TDR transects: P indicates the progressive 0.75 m depth measurements; S indicates the progressive
0.15 and 0.30 m depth measurements.

It is very informative to compare EMI maps with localized ERT profiles (Figure 16). The latter
are taken in reference to the purple line marked in Figure 13. Considering that the values in the
EMI maps are obtained in a configuration that gives one value somehow averaged from the ground
surface down to 1.5 m depth, i.e., practically involving the entire thickness shown by ERT sections in
Figure 16, and given the strong resistivity contrast (both in September and October), this average only
has an indicative meaning. Exploring the ERT transects output, note how at both times the shallow
soil layer (around 0.5 m thick) is much more resistive than the deeper subsoil. This leads to a very
heterogeneous soil profile, so that the EMI maps in Figure 15 only provide a rough mean of the electrical
properties averaged over very different values. The ERT images show, consistently with the EMI
maps, that in October the site was much drier than in September. More advanced approaches using
multi-coil/multi-frequency EMI and depth inversion are, in general, strongly recommended, e.g., [91].
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Figure 16. Cogne site, 2010. ERT profiles acquired at the two survey dates along a short profile
(see Figure 15 for location). The white lines identified by the P indicate the three 0.75 m depths TDR
measurement points. Note that the resistivity scale is much larger in the ERT profiles than in the EMI
maps, in order to give a clearer presentation of the variations of resistivity with depth.

Values summarized in Table 2 highlight a general agreement between TDR water content and
ERT resistivity behaviour along all the transect (“P” values—see Figure 16 for the exact location).
“S” values—see Figure 15 for the transect identification—confirm the water content decrease in the
upper layers where the resistivity is higher (as easily seen also in Figure 16) but a strong variability
connected with the irregular micro morphology of each measurement point become evident.

Table 2. Cogne site, 2010. TDR soil moisture values measured during the 26 September 2010 EMI and
ERT monitoring campaigns. The two TDR transect alignments are depicted in Figure 15.

Probe Code
Transect “P” Transect “S”

P1 P2 P3 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Depth from
surface (m) 0.75 0.15 0.15 0.30 0.15 0.15 0.30 0.15 0.15 0.30 0.15 0.15 0.30 0.15 0.15 0.30

Soil moisture
(m3/m3) 0.41 0.37 0.38 0.33 0.33 0.31 - 0.39 0.22 0.31 0.41 0.40 0.33 0.35 0.34 0.32 0.32 0.27

During the 23 October 2010 EMI and ERT monitoring campaigns, no TDR specific transects
were surveyed, however, the CS616 0.10 m depth probe provided the hourly dataset depicted in
Figure 15. Despite the data gaps, Figure 17 provides interesting information both on the soil moisture
dynamics during the days prior to the measurement, and to the absolute measured soil water content
(in agreement with the expected values).
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values—see Figure 15 for the transect identification—confirm the water content decrease in the upper 
layers where the resistivity is higher (as easily seen also in Figure 16) but a strong variability 
connected with the irregular micro morphology of each measurement point become evident. 

Table 2. Cogne site, 2010. TDR soil moisture values measured during the 26 September 2010 EMI and 
ERT monitoring campaigns. The two TDR transect alignments are depicted in Figure 15. 

Probe 
Code 

Transect “P” Transect “S” 
P1 P2 P3 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Depth 
from 

surface 
(m) 

0.75 0.15 0.15 0.30 0.15 0.15 0.30 0.15 0.15 0.30 0.15 0.15 0.30 0.15 0.15 0.30 

Soil 
moisture 
(m3/m3) 

0.41 0.37 0.38 0.33 0.33 0.31 - 0.39 0.22 0.31 0.41 0.40 0.33 0.35 0.34 0.32 0.32 0.27 

During the 23 October 2010 EMI and ERT monitoring campaigns, no TDR specific transects were 
surveyed, however, the CS616 0.10 m depth probe provided the hourly dataset depicted in Figure 15. 
Despite the data gaps, Figure 17 provides interesting information both on the soil moisture dynamics 
during the days prior to the measurement, and to the absolute measured soil water content (in 
agreement with the expected values). 

 
Figure 17. Cogne site, September–December 2010. Precipitation and soil moisture at 0.10 m depth.  
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Figure 17. Cogne site, September–December 2010. Precipitation and soil moisture at 0.10 m depth.
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4.3. Hilly Vineyard

Long-term soil moisture measurements. A plot of the soil moisture data detected at different
depths (namely 0.1, 0.2, 0.3 and 0.4 m below the surface) is depicted in Figure 18, together with the
rainfall data.
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Figure 18. Carpeneto site, winter 2015–2016. Rainfall and soil moisture data collected with an hourly
time step (from 0.1 to 0.4 m soil depths). Green lines refer to the Grass Cover condition (GC); red lines
refer to the Conventional Tillage condition (TI). Dotted lines refer to the “No Track” condition (NT);
solid lines refer to the “Track” condition (T).

The results of the long-term survey (Figure 18) suggest that, under conventional tillage conditions,
surface soil moisture in the track position was usually lower than in the central no-track zone.
In agreement with Leonard and Andrieux [123] (who found that the major causes in variability
of infiltration rates in vineyards are referred to the history of cultivation and the structure of the first
soil centimetres), the monitored behaviour can mainly be ascribed to both the agricultural treatment
and the soil compaction.

In the grass-covered plot, the soil moisture in the track position was slightly higher than in the
central no-track zone along the whole monitoring period. As already observed by Ferrero et al. [124],
the tractor traffic in vineyards has a great influence on the spatial variability of soil physical properties,
which are strictly related to the topsoil water content. The recurrence of tillage could temporarily
decrease this effect, but affects the variability of soil properties over a long period (for more details, see
Biddoccu et al. [97]).

EMI and TDR combined campaign. The following Figure 19 show the result obtained the
21 March 2016, from the top of the hill down to the bottom (the last meters of the transects were
excluded to avoid measurement distortions due to the presence of a steel grid used to survey the runoff
erosion). EMI data were collected in all the rows, starting from the right side (row 18) and moving to
the left side (row 0).

In Figure 19, the dots represent the TDR measurement sites along the two transects. The TDR
output values are depicted in Figure 20.
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Figure 20. Carpeneto site, 21 March 2016. Soil water content monitored along the two TDR transects
(conventional tillage and grass cover) depicted in Figure 19.

The correlation between ECa and soil moisture is evident (Figures 19 and 20). The results of the
EMI measurement campaign show ECa values along the TI rows lower than those measured along the
GC rows. The high value of ECa along the GC rows can be ascribed to the soil water content, which is
higher than in the TI rows, especially in the deeper layers (Figure 20). Moreover, ECa measured
at 5 kHz (highest depth of investigation) is higher than ECa measured at 10 and 15 kHz, and is in
agreement with the soil water content measured by TDR (Figure 20) and also with the long-term
measurements (Figure 18). However, the low ECa values at the bottom of the TI rows (corresponding
to the 60 m coordinate) do not completely agree with the TDR water content value: at this point,
notwithstanding the lowest TI soil moisture, the ECa values are not as low as the values detected in
similar conditions. Being in the tilled area, this behaviour might be ascribed to the deposition of fine
particles eroded from the top toward the bottom.
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5. Discussion

Through a comprehensive analysis of the presented case studies, it is possible to evaluate the
application pros and cons of the different methods used.

The TDR technique offers wide flexibility in different contexts for both single campaigns and
long-term surveys, with excellent temporal and spatial resolution attainable through the automation of
measurements. Measurements are rapid, non-destructive and simple to obtain. The higher the number
of probes to be acquired simultaneously, the more complex the system will have to be (eventually
adopting a multiplexed system). Depending on the monitoring needs, specific experimental layouts
can be adopted with vertical and/or horizontal probes of different lengths. In ideal conditions
(i.e., low-attenuation porous media with no coarse skeletal material—stones/rocks) TDR probes can
be vertically inserted down to unusual depths (e.g., 4 m, as demonstrated in the plain permanent
meadow case study) to explore the soil water content/behaviour below the most commonly monitored
layers. For these last applications, the adoption of a steel guide during the insertion process is strongly
recommended to maintain rods in parallel and prevent geometrical probe deformations. Due to the
TDR’s inability to detect liquid and ice contents simultaneously (within a bandwidth between a few
megahertz and 1.5 GHz), in the case of frozen soils additional measurements with lower frequencies
(between 0.1 and 200 kHz [118,119]) would be necessary to avoid underestimations or errors.

Low-frequency sensors directly connected to data loggers combine good accuracy and reliability
with a lower cost (and can be used in place of TDR). By their nature they need specific calibration
and they suffer from some restrictions related to the constructive features (e.g., probe lengths; more
fragility—depending on the types and models), but they are easy to use and efficient in the most
common soil moisture investigations.

To determine the spatial distribution of soil moisture, whereas TDR evaluates the specific water
content analysing the full signal response (and relating it to the dielectric properties), the ERT
system determines the two-dimensional electric resistivity distribution (from surface-based geoelectric
measurements and subsequent data inversion). A combination of both methods would lead to better
results (e.g., for calibrating the ERT approach). However, determining the soil water content from
the resulting electrical resistivity values is more difficult than in the case of the dielectric coefficients
using TDR. The inversion procedure can produce mass balance errors, due to a rapid decrease of
ERT resolution with depth [40]. This problem may be solved through a coupled hydro-geophysical
approach [40,101]. However, if only qualitative assessment of spatial distribution and time variations
of soil moisture content are sufficient, an uncoupled approach can be used [32], based on the following
steps: (1) inversion of geophysical field data gives the spatial distribution of electrical resistivity;
(2) application of a petro-physical relationship to obtain an estimation of moisture content distribution
from the electrical resistivity.

It must be noted that electrical resistivity and electrical conductivity, as measured by EMI, are just
reciprocal quantities. Thus ERT and EMI measure the same physical parameter, and can be effectively
used to complement each other: EMI gives quicker information over large areas, while ERT is more
effective at in-depth investigations. In the hilly vineyard test case, for example, EMI measurements
allow for identifying differences in ECa (and thus soil moisture) between the two treatments and
in relation to depth, with results that are comparable with the more accurate (and time-consuming)
TDR measurements. In the permanent mountain meadow, since EMI measurements are fast (and
not invasive), it was possible to map the ECa spatial variations over the whole field-size plot (also
in complex logistical conditions). Some discordances between EMI and TDR measurements could
be ascribed to local conditions that can affect TDR local measurements. When possible, a combined
EMI and TDR campaign allows us to combine accuracy with wider spatial representativeness of
measurements than only TDR campaigns.

Without considering the borehole applications (which have not been analysed in this work), GPR
can be used to perform specific campaigns aimed at obtaining soil sub-surface “images” (typically
in the range of sub-meters up to tens of meters) referred to the interaction between the transmitted
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EM energy and the spatial variation in the complex, frequency-dependent EM properties of the earth
materials in the subsurface [125]. For small-scale, site-specific experiments, GPR can be used to monitor
the movement of water into the—and through the—subsurface (such as the depth of the infiltration
front estimated by GPR measurements in the plain permanent meadow case study). However, the use
of GPR systems remains difficult in uneven irregular areas due to the need to drag the instrument
to keep it in contact with the soil surface (such as at the permanent mountain meadow testing site).
Limitations are also acknowledged in clay-laden soils (such as the hilly vineyard testing site), where the
signal penetration into the soil is strongly reduced by the high electrical conductivity.

6. Conclusions

Soil moisture is highly variable at both the spatial and the temporal scale, and soil moisture field
measurements are recognized to be fundamental in the integration of in situ, satellite and modelled
data. For these reasons, in our work we provide a synoptic view of techniques, supported by case
studies, to show that also in very different field conditions (in terms of altitude, land use, and soil type,
namely a plain, a mountain meadow and a hilly vineyard) it is possible to estimate time and spatially
resolved soil moisture by the same combination of instruments: contact-based methods (i.e., Time
Domain Reflectometry—TDR, and two low-frequency probes) for the time resolved, and minimally
invasive hydro-geophysical methods (i.e., Electromagnetic Induction—EMI, Ground Penetrating
Radar—GPR, and the Electrical Resistivity Tomography—ERT) for the spatially resolved. By doing
so, soil moisture dynamics determined by soil’s heterogeneity and meteorological events can be
efficiently observed and measured. In particular, while plot-scale methods—like EMI, GPR and
ERT—provide efficient spatial surveys, local-scale methods—like TDR and other lower-cost soil
moisture sensors—provide efficient soil moisture monitoring across time (and space—where properly
structured). With less accuracy, and with smaller volume support, the low-frequency sensors can also
be used in place of TDR.

An important key future challenge might be represented by the creation of a framework in which
the information contained in the local and plot observations is combined with model predictions
of soil moisture dynamics, at different spatial scales. Nowadays, this integrated approach would
represent the best method to achieve the great potential, especially in hydrological applications, of soil
moisture studies.
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